Jointly Private Convex Programming
نویسندگان
چکیده
In this paper we present an extremely general method for approximately solving a large family of convex programs where the solution can be divided between different agents, subject to joint differential privacy. This class includes multi-commodity flow problems, general allocation problems, and multi-dimensional knapsack problems, among other examples. The accuracy of our algorithm depends on the number of constraints that bind between individuals, but crucially, is nearly independent of the number of primal variables and hence the number of agents who make up the problem. As the number of agents in a problem grows, the error we introduce often becomes negligible. We also consider the setting where agents are strategic and have preferences over their part of the solution. For any convex program in this class that maximizes social welfare, there is a generic reduction that makes the corresponding optimization approximately dominant strategy truthful by charging agents prices for resources as a function of the approximately optimal dual variables, which are themselves computed under differential privacy. Our results substantially expand the class of problems that are known to be solvable under both privacy and incentive constraints. Department of Computer and Information Science, University of Pennsylvania. Email: [email protected] Department of Computer Science, University of Hong Kong. Email: [email protected] Department of Computer and Information Science, University of Pennsylvania. Email: [email protected] Department of Computer and Information Science, University of Pennsylvania. Email: [email protected]
منابع مشابه
A numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کامل